All scientific output involving the CircAdapt team and model is listed below.

  • Arts T, Lyon A, Delhaas T, Kuster DWD, van der Velden J, Lumens J. Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model J Mol Cell Cardiol. 190:13-23, 2024. [Pubmed]
  • Koopsen T, van Osta N, van Loon T, et al. Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination. Biomed Eng Online. 23(1):46, 2024. [Pubmed]
  • Dhont S, van den Acker G, van Loon T, et al. Mitral regurgitation in heart failure with preserved ejection fraction: The interplay of valve, ventricle, and atrium. Eur J Heart Fail. 26(4):974-983, 2024. [Pubmed]
  • Tamargo M, Martínez-Legazpi P, Espinosa MÁ, et al. Increased Chamber Resting Tone Is a Key Determinant of Left Ventricular Diastolic Dysfunction. Circ Heart Fail. 16(12):e010673, 2023. [Pubmed]
  • Koopsen T, Gerrits W, Van Osta N, et al. Virtual pacing of a patient’s digital twin to predict left ventricular reverse remodelling after cardiac resynchronization therapy. Europace. 28;26(1):euae009, 2024 [Pubmed]
  • Kirkels FP,* van Osta N,* Rootwelt-Norberg C, et al. Monitoring of Myocardial Involvement in Early Arrhythmogenic Right Ventricular Cardiomyopathy Across the Age Spectrum. J Am Coll Cardiol. 82(9):785-797, 2023. *authors contributed equally [Pubmed]
  • Munneke A, Lumens J, Arts T, Prinzen FW, Delhaas T. Myocardial perfusion and flow reserve in the asynchronous heart: mechanistic insight from a computational model. J Appl Physiol. 135(3):489-499, 2023. [Pubmed]
  • Meiburg R, Rijks JHJ, Beela AS, et al. Comparison of novel ventricular pacing strategies using an electro-mechanical simulation platform. Europace. 25(6): euad144, 2023. [Pubmed]
  • Henkens MTHM, Raafs AG, van Loon T, et al. Left Atrial Function in Patients with Titin Cardiomyopathy. J Card Fail. Online ahead of print, 2023. [Pubmed]
  • Bouwmeester S, van Loon T, Ploeg M, et al. Left atrial remodeling in mitral regurgitation: A combined experimental-computational study. PLoS One. 17(7):e0271588, 2022. [Pubmed]
  • Shahmohammadi M, Huberts W, Luo H, et al. Hemodynamics-driven mathematical model of third heart sound generation. Front Physiol. 11;13:847164, 2022. [Pubmed]
  • Koopsen T, Van Osta N, Van Loon T, et al. A Lumped Two-Compartment Model for Simulation of Ventricular Pump and Tissue Mechanics in Ischemic Heart Disease. Front Physiol. 13:782592, 2022. [Pubmed]
  • Munneke AG, Lumens J, Arts T, Delhaas T. A Closed-Loop Modeling Framework for Cardiac-to-Coronary Coupling. Front Physiol. 13:830925, 2022. [Pubmed]
  • Salden FCWM, Huntjens PR, Schreurs R, et al. Pacing therapy for atrioventricular dromotropathy: a combined computational-experimental-clinical study. Europace. 2021; 24(5):784-795, 2022. [PubMed]
  • van Osta N, Kirkels FP, van Loon T, et al. Uncertainty Quantification of Regional Cardiac Tissue Properties in Arrhythmogenic Cardiomyopathy Using Adaptive Multiple Importance Sampling. Front Physiol. 2021;12:738926. [PubMed]
  • Augustin CM, Gsell MAF, Karabelas E, et al. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. Comput Methods Appl Mech Eng. 386:114092, 2021. [PubMed]
  • Lumens J, Koopsen T, Beela AS. What Do We Gain From Septal Strain? JACC Cardiovasc Imaging 14(9):1703-1706, 2021. [PubMed]
  • Van Osta N, Kirkels F, Lyon A, et al. Electromechanical substrate characterization in arrhythmogenic cardiomyopathy using imaging-based patient-specific computer simulations. Europace 23(Supplement_1):i153-i160, 2021. [PubMed]
  • Lyon A, van Mourik M, Cruts L, et al. Both beat-to-beat changes in RR-interval and left ventricular filling time determine ventricular function during atrial fibrillation. Europace 2021;23(Supplement_1):i21-i28. [PubMed]
  • Munneke AG, Lumens J, Delhaas T. Cardiovascular fetal-to-neonatal transition: an in silico model. Pediatr Res 2021; 91(1): 116-128, 2021. [PubMed]
  • van Loon T, Knackstedt C, Cornelussen R, et al. Increased myocardial stiffness more than impaired relaxation function limits cardiac performance during exercise in heart failure with preserved ejection fraction: a virtual patient study. Eur Heart J – Digital Health 1: 40–50, 2020. [Pubmed]
  • Prinzen FW, Lumens J. Investigating myocardial work as a CRT response predictor is not a waste of work. Eur Heart J 2020;41(39):3824-3826. [PubMed]
  • Van Osta N, Lyon A, Kirkels F, et al. Parameter Subset Reduction for Patient-Specific Modelling of Arrhythmogenic Cardiomyopathy-Related Mutation Carriers in the CircAdapt Model. Philos Trans A Math Phys Eng Sci. 2020;378(2173):20190347. [PubMed]
  • Lumens J, Willemen E, Prinzen FW. Does the Right Go Wrong During Cardiac Resynchronization Therapy? JACC Cardiovasc Imaging 2020;13(7):1485-1488. [PubMed]
  • Gauthey A, Willemen E, Lumens J, et al. Impact of paced left ventricular dyssynchrony on left ventricular reverse remodeling after cardiac resynchronization therapy. J Cardiovasc Electrophysiol 2020;31:494-502. [PubMed]
  • Walmsley J, Squara P, Wolfhard U, Cornelussen R, Lumens J. Impact of Abrupt Versus Gradual Correction of Mitral and Tricuspid Regurgitation: A Modelling Study. EuroIntervention 2019;15:902-911. [PubMed]
  • Heusinkveld MHG, Huberts W, Lumens J, Arts T, Delhaas T, Reesink KD. Large vessels as a tree of transmission lines incorporated in the CircAdapt whole-heart model: A computational tool to examine heart-vessel interaction. PLoS Comput Biol. 2019;15(7):e1007173. [PubMed]
  • Heusinkveld MHG, Delhaas T, Lumens J, et al. Augmentation index is not a proxy for wave reflection magnitude: mechanistic analysis using a computational model. J Appl Physiol (1985) 2019;127:491-500. [PubMed]
  • Gorcsan J 3rd, Lumens J. Opposing Wall Pushing and Stretching: Response to Cardiac Resynchronization Therapy Requires Electrical Delay and Viability. JACC Cardiovasc Imaging 2019;12:2414-2416. [PubMed]
  • Willemen E, Schreurs R, Huntjens PR, et al. The Left and Right Ventricles Respond Differently to Variation of Pacing Delays in Cardiac Resynchronization Therapy: A Combined Experimental- Computational Approach. Front Physiol 2019;10:17. [PubMed]
  • Lumens J, Fan CS, Walmsley J, et al. Relative Impact of Right Ventricular Electromechanical Dyssynchrony Versus Pulmonary Regurgitation on Right Ventricular Dysfunction and Exercise Intolerance in Patients After Repair of Tetralogy of Fallot. J Am Heart Assoc 2019;8(2):e010903. [PubMed]
  • Kirn B, Walmsley J, Lumens J. Uniqueness of local myocardial strain patterns with respect to activation time and contractility of the failing heart: a computational study. Biomed Eng Online 2018;17(1):182. [PubMed]
  • Dupuis L, Arts T, Prinzen FW, Delhaas T, Lumens J. Linking Cross-bridge Cycling Kinetics to Response to Cardiac Resynchronization Therapy: a Multiscale Modelling Study. Europace 2018;20(suppl_3):iii87-iii93. [PubMed]
  • Dupuis L, Lumens J, Arts T, Delhaas T. High Tension in Sarcomeres Hinders Myocardial Relaxation: a Computational Study. PLoS One 2018;13(10):e0204642. [PubMed]
  • Gorcsan J 3rd, Anderson CP, Tayal B, et al. Systolic Stretch Characterizes the Electromechanical Substrate Responsive to Cardiac Resynchronization Therapy. JACC Cardiovasc Imaging 2018;12:1741-1752. [PubMed]
  • Delhaas T, Koeken Y, Latus H, et al. Potts Shunt to Be Preferred Above Atrial Septostomy in Pediatric Pulmonary Arterial Hypertension Patients: A Modeling Study. Front Physiol 2018;9:1252. [PubMed]
  • Huntjens PR, Ploux S, Strik M, et al. Electrical Substrates Driving Response to Cardiac Resynchronization Therapy: A Combined Clinical-Computational Evaluation. Circ Arrhythm Electrophysiol 2018;11:e005647. [PubMed]
  • Prinzen FW, Willemen E, Lumens J. LBBB and High Afterload: A Dangerous Liaison? JACC Cardiovasc Imaging 2018;12:978-980. [PubMed]
  • Walmsley J, van Everdingen W, Cramer MJ, Prinzen FW, Delhaas T, Lumens J. Combining Computer Modelling and Cardiac Imaging to Understand Right Ventricular Pump Function. Cardiovasc Res 2017;113:1486-1498. [PubMed]
  • van Everdingen WM, Walmsley J, Cramer MJ, et al. Echocardiographic Prediction of Cardiac Resynchronization Therapy Response Requires Analysis of Both Mechanical Dyssynchrony and Right Ventricular Function: A Combined Analysis of Patient Data and Computer Simulations. J Am Soc Echocardiogr 2017;30:1012-1020. [PubMed]
  • Palau-Caballero G, Walmsley J, Van Empel V, Lumens J, Delhaas T. Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model. Am J Physiol Heart Circ Physiol 2017;312:H691-H700. [PubMed]
  • Gorcsan J, Lumens J. Rocking and Flashing with Right Ventricular Pacing: Implications for Resynchronization Therapy. JACC Cardiovasc Imaging 2016;10:1100-1102. [PubMed
  • Mast TP, Teske AJ, Walmsley J, et al. Right Ventricular Imaging and Computer Simulation for Electromechanical Substrate Characterization in Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol 2016;68:2185-2197. [PubMed]
  • Dupuis L, Lumens J, Arts T, Delhaas T. Mechano-chemical interactions in cardiac sarcomere contraction: a computational modeling study. PLoS Comput Biol 2016;12:e1005126. [PubMed]
  • Palau-Caballero G, Walmsley J, Gorcsan J, Lumens J, Delhaas T. Abnormal Ventricular and Aortic Wall Properties Can Cause Inconsistencies in Grading Aortic Regurgitation Severity: A Computer Simulation Study. J Am Soc Echocardiogr 2016;29:1122-1130. [PubMed]
  • Jones S, Lumens J, Sohaib SM, et al. BRAVO Investigators. Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function. Europace 2016;19:1178-1186. [PubMed]
  • Walmsley J, Huntjens PR, Prinzen FW, Delhaas T, Lumens J. Septal flash and septal rebound stretch have different underlying mechanisms. Am J Physiol Heart Circ Physiol 2016;310:H394-403. [PubMed]
  • Pluijmert M, Lumens J, Potse M, et al. Computer modelling for better diagnosis and therapy of patients by cardiac resynchronisation therapy. Arrhythm Electrophysiol Rev 2015;4:62–67.[PubMed]
  • Lumens J, Prinzen FW, Delhaas T. Longitudinal Strain: “Think Globally, Track Locally”. JACC Cardiovasc Imaging 2015;8:1360-1363. [PubMed]
  • Lumens J, Tayal B, Walmsley J et al. Differentiating electromechanical from non-electrical substrates of mechanical discoordination to identify responders to cardiac resynchronization therapy. Circ Cardiovasc Imaging 2015;8:e003744. [PubMed]
  • Walmsley J, Arts T, Derval N et al. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module. PLoS Comput Biol 2015;11:e1004284. [PubMed]
  • Kroon W, Lumens J, Potse M et al. In vivo electromechanical assessment of heart failure patients with prolonged QRS duration. Heart Rhythm 2015;12:1259-67. [PubMed]
  • Huntjens PR, Walmsley J, Ploux S et al. Influence of left ventricular lead position relative to scar location on response to cardiac resynchronization therapy: a model study. Europace 2014;16 Suppl 4:iv62-iv68. [PubMed]
  • Auricchio A, Lumens J, Prinzen FW. Does cardiac resynchronization therapy benefit patients with right bundle branch block: cardiac resynchronization therapy has a role in patients with right bundle branch block. Circ Arrhythm Electrophysiol 2014;7:532-542. [PubMed]
  • Kuijpers NH, Hermeling E, Lumens J et al. Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT. Am J Physiol Heart Circ Physiol 2014;306:H1644-H1659. [PubMed]
  • Lumens J. Creating your own virtual patient with CircAdapt Simulator. Eur Heart J 2014;35:335-337. [PubMed]
  • Lumens J, Ploux S, Strik M, Gorcsan J 3rd et al. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction. J Am Coll Cardiol 2013;62:2395-403. [PubMed]
  • Lumens J, Leenders GE, Cramer MJ et al. Mechanistic Evaluation of Echocardiographic Dyssynchrony Indices: Patient Data Combined with Multiscale Computer Simulations. Circ Cardiovasc Imaging 2012;5:491-499. [PubMed]
  • Lumens J, Arts T, Marcus JT, Vonk-Noordegraaf A, Delhaas T. Early-diastolic left ventricular lengthening implies pulmonary hypertension-induced right ventricular decompensation. Cardiovasc Res 2012;96:286-95. [PubMed]
  • Lumens J, Delhaas T. Cardiovascular modeling in pulmonary arterial hypertension: focus on mechanisms and treatment of right heart failure using the CircAdapt model. Am J Cardiol 2012;110:39S-48S. [PubMed]
  • Arts T, Lumens J, Kroon W, Delhaas T. Control of Whole Heart Geometry by Intramyocardial Mechano-Feedback: A Model Study. PLoS Comput Biol 2012;8:e1002369. [PubMed]
  • Leenders GE, Lumens J, Cramer MJ et al. Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model. Circ Heart Fail 2012;5:87-96. [PubMed]
  • Koeken Y, Kuijpers NH, Lumens J, Arts T, Delhaas T. Atrial septostomy benefits severe pulmonary hypertension patients by increase of left ventricular preload reserve. Am J Physiol Heart Circ Physiol 2012;302:H2654-62. [PubMed]
  • Arts T, Reesink K, Kroon W, Delhaas T. Simulation of adaptation of blood vessel geometry to flow and pressure: implications for arterio-venous impedance. Mech Res Commun 2011;42:15-21.
  • Lumens J, Blanchard DG, Arts T, Mahmud E, Delhaas T. Left ventricular underfilling and not septal bulging dominates abnormal left ventricular filling hemodynamics in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010;299:H1083-91. [PubMed]
  • Lumens J, Arts T, Broers B et al. Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis. Am J Physiol Heart Circ Physiol 2009;297:H2196-205. [PubMed]
  • Lumens J, Arts T, Delhaas T. Ventricular Mechanical Asynchrony in Pulmonary Arterial Hypertension: A Model Study. In: Ayache N, Delingette H, Sermesant M, editors. Functional Imaging and Modeling of the Heart. Nice, France: Springer Berlin / Heidelberg, 2009:249-257.
  • Lumens J, Delhaas T, Kirn B, Arts T. Three-Wall Segment (TriSeg) Model Describing Mechanics and Hemodynamics of Ventricular Interaction. Ann Biomed Eng 2009;37:2234-2255. [PubMed]
  • Lumens J, Delhaas T, Kirn B, Arts T. Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics. Pac Symp Biocomput 2008:378-89. [PubMed]
  • Kerckhoffs RC, Lumens J, Vernooy K et al. Cardiac resynchronization: insight from experimental and computational models. Prog Biophys Mol Biol 2008;97:543-61. [PubMed]
  • Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol Heart Circ Physiol 2005;288:H1943-54. [PubMed]
  • Arts T, Bovendeerd P, Delhaas T, Prinzen F. Modeling the relation between cardiac pump function and myofiber mechanics. J Biomech 2003;36:731-6. [PubMed]
  • Arts T, Bovendeerd PH, Prinzen FW, Reneman RS. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J 1991;59:93-102. [PubMed


Scientific papers

Book chapters

  • Arts T, Lumens J, Kroon W, Donker DW, Prinzen FW, Delhaas T. Patient-Specific Modeling of Cardiovascular Dynamics with a Major Role for Adapation. In: Kerckhoffs R, editor Patient-Specific Modeling of the Cardiovascular System: Technology-Driven Personalized Medicine. New York: Springer, 2010:21-41.